Basic Concepts of Fuzzy Logic

Apparatus of fuzzy logic is built on:

- Fuzzy sets: describe the value of variables
- Linguistic variables: qualitatively and quantitatively described by fuzzy sets
- Possibility distributions: constraints on the value of a linguistic variable
- Fuzzy if-then rules: a knowledge

Fuzzy sets

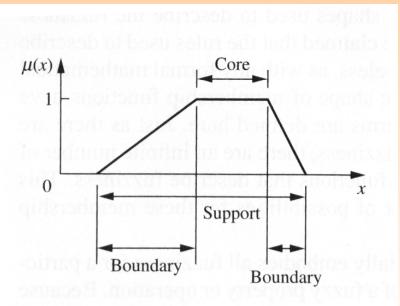
A fuzzy set is a set with a smooth boundary.

A fuzzy set is defined by a functions that maps objects in a domain of concern into their membership value in a set.

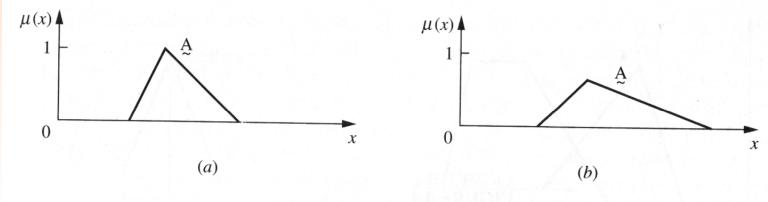
Such a function is called the *membership function*.

Features of the Membership Function

- **Core**: comprises those elements x of the universe such that $\mu_a(x) = 1$.
- **Support** : region of the universe that is characterized by nonzero membership.
- **Boundary** : boundaries comprise those elements *x* of the universe such that 0< µ_a (x) <1

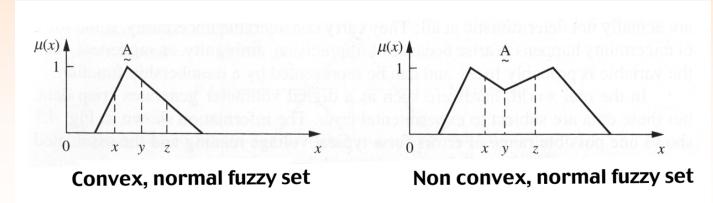


• Normal Fuzzy Set : at least one element x in the universe whose membership value is unity



Fuzzy sets that are normal (a) and subnormal (b).

 Convex Fuzzy Set: membership values are strictly monotonically increasing, or strictly monotonically decreasing, or strictly monotonically increasing then strictly monotonically decreasing with increasing values for elements in the universe.



 $\mu_{a}(y) \geq \min[\mu_{a}(x), \mu_{a}(z)]$

• Cross-over points : μ_a (x) = 0.5

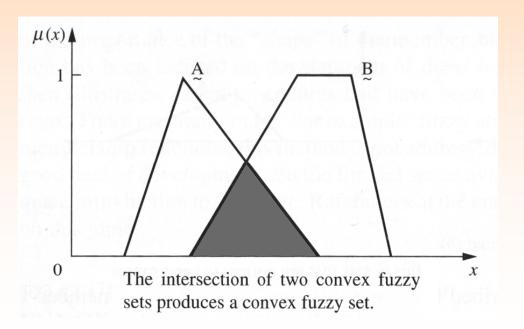
- Height: defined as max { μ_a (x) }

Operations on Fuzzy Sets

- Logical connectives:
 - Union
 - A U B = max(χ_a (x) , χ_b (x))
 - Intersection
 - A . B = min(χ_a (x) , χ_b (x))
 - Complementary
 - A ----> χ_a (x) = 1- χ_a (x)

• Special Property of two convex fuzzy set:

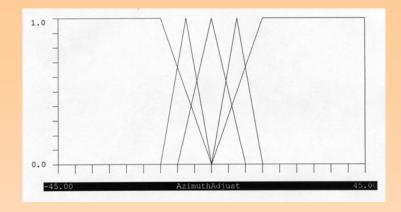
for A and B, which are both convex, A. B is also convex.



Design Membership Functions

<u>Manual</u>

- Expert knowledge. Interview those who are familiar with the underlying concepts and later adjust. Tuned through a trial-and-error
- Inference
- Statistical techniques (Rank ordering)



• Derived from the capacity of humans to develop membership functions through their own innate intelligence and understanding.

• Involves contextual and semantic knowledge about an issue; it can also involve linguistic truth values about this knowledge.

Inference

 Use knowledge to perform deductive reasoning, i.e. we wish to deduce or infer a conclusion, given a body of facts and knowledge.

- In the identification of a triangle
 - Let A, B, C be the inner angles of a triangle
 - Where $A \ge B \ge C$
 - Let U be the universe of triangles, i.e.,
 - $U = \{(A,B,C) | A \ge B \ge C \ge 0; A + B + C = 180^{\circ}\}$
 - Let 's define a number of geometric shapes
 - I Approximate isosceles triangle
 - R Approximate right triangle
 - IR Approximate isosceles and right triangle
 - E Approximate equilateral triangle
 - T Other triangles

• We can infer membership values for all of these triangle types through the method of inference, because we possess knowledge about geometry that helps us to make the membership assignments.

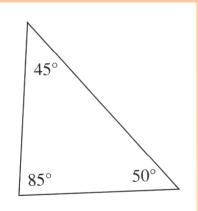
• For Isosceles,

- $\square \mu_i$ (A,B,C) = 1- 1/60* min(A-B,B-C)
- If A=B OR B=C THEN μ_{i} (A,B,C) = 1;
- If A=120°,B=60°, and C =0° THEN μ_{i} (A,B,C) = 0.

- For right triangle,
 - $\square \mu_{R}$ (A,B,C) = 1- 1/90* |A-90°|
 - If A=90° THEN μ_i (A,B,C) = 1;
 - If A=180° THEN μ_{i} (A,B,C) = 0.
- For isosceles and right triangle
 - IR = min (I, R)
 - $\square \ \mu_{IR} (A,B,C) = min[\mu_{I} (A,B,C), \mu_{R} (A,B,C)]$
 - = 1 max[1/60min(A-B, B-C), 1/90|A-90|]

- For equilateral triangle
 - $\square \mu_{E}$ (A,B,C) = 1 1/180* (A-C)
 - When A = B = C then μ_E (A,B,C) = 1, A = 180 then μ_E (A,B,C) = 0
- For all other triangles

= min {1 - μ_I (A,B,C) , 1 - μ_R (A,B,C) , 1 - μ_E (A,B,C)



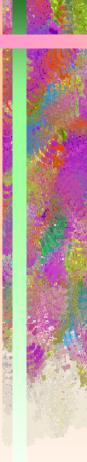
- Define a specific triangle: • $A = 85^{\circ} \ge B = 50^{\circ} \ge C = 45^{\circ}$ $\mu R = 0.94$ $\mu I = 0.916$ $\mu IR = 0.916$ $\mu E = 0.7$ $\mu T = 0.05$

Rank ordering

- Assessing preferences by a single individual, a committee, a poll, and other opinion methods can be used to assign membership values to a fuzzy variable.
- Preference is determined by pairwise comparisons, and these determine the ordering of the membership.

Rank ordering: Example

	Number who preferred						, ,	
	Red	Orange	Yellow	Green	Blue	Total	Percentage	Rank order
Red		517	525	545	661	2,248	22.5	2
Orange	483		841	477	576	2,377	23.8	1
Yellow	475	159		534	614	1,782	17.8	4
Green	455	523	466		643	2,087	20.9	3
Blue Total	339	524	386	357		1,506 10,000	15	5



Design Membership Functions

<u>Automatic or Adaptive</u>

- Neural Networks
- Genetic Algorithms
- Inductive reasoning
- Gradient search

Will study these techniques later

Guidelines for membership function design

- Always use parameterizable membership functions. Do not define a membership function point by point.
 - Triangular and Trapezoid membership functions are sufficient for most practical applications!

